Numerical Experiments for Multiscale Problems in Linear Elasticity
نویسندگان
چکیده
This paper gives numerical experiments for the Finite Element Heterogeneous Multiscale Method applied to problems in linear elasticity, which has been analyzed in [A. Abdulle, Math. Models Methods Appl. Sci. 16, 2006]. The main results for the FE-HMM a priori errors are stated and their sharpness are verified though numerical experiments.
منابع مشابه
Multiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory
A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...
متن کاملA framework for residual-based stabilization of incompressible finite elasticity: Stabilized formulations and methods for linear triangles and tetrahedra
A new Variational Multiscale framework for finite strain incompressible elasticity is presented. Significant contributions in this work are: (i) a systematic derivation of multiscale formulations that include the classical F method as a particular subclass, (ii) an error estimation procedure for nonlinear elasticity that emanates naturally from within the present multiscale framework, and (iii)...
متن کاملA ctitious domain method for linear elasticity problems
A ctitious domain method based on boundary Lagrange multipliers is proposed for linear elasticity problems in two dimensional domains. The solution of arising saddle-point problem is obtained iteratively using MINRES method with a positive deenite block diagonal preconditioner which is based on a fast direct solver for diiusion problems. Numerical experiments demonstrate the behavior of conside...
متن کاملLocking-free adaptive discontinuous Galerkin FEM for linear elasticity problems
An adaptive discontinuous Galerkin finite element method for linear elasticity problems is presented. We develop an a posteriori error estimate and prove its robustness with respect to nearly incompressible materials (absence of volume locking). Furthermore, we present some numerical experiments which illustrate the performance of the scheme on adaptively refined meshes.
متن کاملOn Domain Decomposition Algorithms for Contact Problems with Tresca Friction
Development of numerical methods for the solution of contact problems is a challenging task whose difficulty lies in the non-linear conditions for non-penetration and friction. Recently, many authors proposed to use various numerical algorithms combined with multigrid or domain decomposition techniques; see, e.g., the primal-dual active set algorithm [8], the non-smooth multiscale method [10], ...
متن کامل